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We consider a nonlinear encounter-evasion differential game on a finite time 

interval. To solve it we use an auxiliary program construction. The article is 

closely related to the investigations in [ 1 - 81. 

1. Let the motion of a conflict-controlled system be described by equations of the 
form 

dxldt = f (t, x3 u, L-), LL: It,1 = x0 

x E R”, u E P c RP, r;=QcRq 

The sets P and Q are assumed to be compact, while the function f (s) is assumed to 

be continuous in theaggregate and continuously differentiable in T. We assume that 

every solution z (t) of the equation 

d.r(t)/dt&iY{y:y=f(t,x(t),u.u); uEP.r-EQQ) 

under the conditions c(’ (t.+) E K. t, E [to , o,] is uniformly bounded on It*, 6,] 
by a number p (t,, K, 6,) for every bounded K C R”. 

A function cl) (6, I(‘, m)is given on the set ((6, x’, m) : 6 E T, x E R’“, m E 
!If o} Here the sets T C [toa 6,] and Ii/l m:- ((6. nz) : it i-:1! T, m E fil,~} are as- 
sumed to be compact, while the function o ( .) is assumed to be continuous in the aggre- 
gate and continuously differentiable in IL’ in the region cl) ,) < U) < o “. The first 
player, by choosing the control 71 E 1' , the instant 6 E T, and the point m E hia, 

strives to ensure the inequality w (6, x 101, m) \( E, where E is a given number. The 
second player chooses a control 1’ E q and pursues the opposite goal. Analogously to 

[2] we identify the first player’s strategy C with the function 0’ (t, .r) C i? Every 

uniform limit of the Euler polygonal lines sA(ii [LJ satisfying almost everywhere the 

equation dx A(i) ltlidt E f (t, zA(i) /tj, U ITi!‘], U It]) 

Ii) 
'tc+1- t;;':.; Ai, ZL [@I E u (al;), “ZAlrci) [rjf’]) 

r: [/I E Q is measurable 

is called a motion 5 ItI = JI: It] = .c [t, f,, so, &‘) . Here and below {Ai} is a 
sequence converging to zero (A i > 0). 

The counter-strategy [;, is identified with a function I/‘,, (t. s, I.) c P, while 
every uniform limit of the Euler polygonal lines x Jcij [tJ satisfying almost everywhere 
the equation 

dr,(i) [tlldt z f (tt IA(~) ltlt uft r? It]) 
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is called a motion I [tl = J’:!!, 111 .m= z [t. t,,, .)’ ,, l.,- , I. The second player’s strategies 
I’ and the motions L [tl = xv [t] = z [t, t,. x,, VI are defined analogously with 

the natural alterations in notation. 

Every uniform limit of the Euler polygonal lines “A(i) [t] satisfying the equation 

dsA(i) [fj/dt E f(t, ZA(i) [t], ZC [tp)], G [TV”)]) 

21 iT( E U (Tc), Il’A(i) 1~2’1) 

L’ [ pj ,E 1’ (p, 
x,(i) [tf’i)]) 

$I1 - T;’ < Ai, r*(i) i(i) / ltlmTtl \ Ai 
is called the motion 5 It] = 5u.v It] generated by the strategy pair (U, v) . 

2. Problem 1. Given t,, sO and 6, , for a specified number E find the counter- 
strategy Ii,” guaranteeing for any motion xu,0 [tl the fulfillment of the relation 

(1) (0, “rJ,g 161, m) < t: 

for some 6 E T, m E MO. 
Problem 2. Given t,, x,, and 6,, for a specified number E find the strategy [!’ 

guaranteeing for any motion .rr;~ 1 f] the fulfillment of the relation 

C!, ( 3, .l [; J IUI, m) -‘I c 

for some 17 c= T, m E Jr,,. 
Problem 2 is solved under the assumption that the saddle point s’f ( .) of the “small 

game” [3] exists. Analogously to [4], we construct a stable system of sets 1,I’E for solving 

Problems 1 and 2. Then under the condition that (t,, so) E W,, Problem 1 and, respec- 
tively, Problem 2 can be solved by means of counter-strategy I ‘U or of strategy U” 
which, analogously to [5, 61 realize the extremal sighting on some leading motion con- 
tained in set IV’, up to the realization of the payoff w .6 E by the first player. 

To solve the position game problems posed we use the following program construction. 

For every t, E Ii,, O,] and 6 F [t*. I?,] we define a class (11 (m (.)), T.+(!‘J} of 

program controls q (.) as the set of all regular Bore1 measures on T*(“) X P X Q, 
where T*‘“‘) = [t,, til, having a Lebesgue projection on T,(“): for any Bore1 set 

G c T,c”) q (G N I-’ :c Q) = m (G) 

where m i . ) is the Lebesgue measure on a straight line. We identify the class 

{L: (m (-)), T,(“)} f h o t e second player’s program control with the set of all regular 

Bore1 measures ‘v (.) on T,(“) ;,’ Q, having a Lebesgue projection on T,(!‘J. 
For every control Y ( .) cz (b (m (. )), T*(“)} we define the program {II (v ( -)), 

i”*cU)} as the set of all measures 11 (*) c!!! {If (m (e)), T,t(8)) consistent with mea- 
sure 1’ (.): for any Bore1 sets 1 C TX(*) and B C Q 

9, (A >: p i; R) := v (a X R) 

Analogously to 171, every absolutely continuous function satisfying almost everywhere 
the equation 

cll!d; : \’ \ .i (I , ,1‘, u, r) 111 (JIL X dr) 

ij ;J 

where tI 1 ( .) is the conditional probability measure [S] corresponding to a given con - 
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trol ‘1 (.): for any Bore1 sets G C T*(8), A C i” and B C Q 

where ?rr ( -) is the Lebesgue measure on a straight line, is called the program motion 

CF (t, t*. x*7 ‘1 (*)) for each q(e) E (H (m (al), T*c8)} on the interval.T,(Uj. 
It is well known [8] that such a motion exists and is unique for every ‘I( - )E (11 (m ( -)), 
T,L” ?}. 

For the program (11 (v (e)), T,(“)} we define by C: (a, t,, x+., Y (.)) the attain- 
ability region at instant 6 E [t,, +,,I , This is a compact set in K’” for every measure 

v ( . ) E {E (m ( .)), T..:(~)} . We define the following function: 

&O(/*, .2’*, 0) = max 
(E[???(.)), T(*8)\ minc(u, t*, X*, v:.)) mjnv,o (6, .T, rn) 

t, iz [to, 6,1, 6 E [t*, 6,l 

The control 17’ ( .) r {n (v ( .)), T*(‘)} is said to be optimal in the program for the 

instant 0 E T f-l It,, ti,] if 

min_,I,o (6, (p” (a), m) = minc(a, t.+, 5*, v(.)) min,ll,o (tf, J, m) 

By (I-1 (v (.)), T,(“)l t,, X*}O we denote all the program controls optimal in 

(11 (v (a)), Y’* (u’} for the position (t,, x*.> and for the instant 6. For each ?I( .) E 

{H (m (*)), l’*CUJ) we form also a set AGOG (II (*) 1 t,, x*) as the set of all points 
i m E i~/l,, where ti ;: It,, I?,] r) I’, for which 

0 (6, cp (6), m’) = min:Yr, 0 (6, cp ifi>, m) 

cp (6) = cp (6)7 t,, x*7 71 (*)) 

Every control v” ( .) E {E (m (. )), l’X:(a) ) satisfying the equality 

minc(n, I *, x*, vo(.)) mb~,(~ (6, 5, 4 = E” (b., 5*, 6) 

is called the second player’s program control optimal for the instant Q and for the posi- 

tion (t*, x*) . It can be proved that the first and second players’ optimal program con- 
trols exist for every position (t*, z*) and instant fJ E It*, so] n T . 

By 0 (4+, %;ic, 6) we denote the set of all the second player’s controls optimal for 
position (t*, x.J and instant 6 . It can be shown that for a fixed 6 E [ &, 6,] i] T 
the set cr (t, x, 6) is weakly upper semicontinuous by inclusion as the position changes. 
For a fixed position the function a0 (t+, x*, J?(f) is lower semicontinuous in 0. We 
denote e0 (t$:, .r.J = itlirll,,, <>“l m, 1. P (I:~. z.+. ;I). 

We introduce the set 0 (t,. .r2) C It,:. fb,,i ’ ’ 1’ of all instants iI,: such that 
e” (f*. J’*:. Gyc) t.O (fy:. .?,*j. For every tl:” (.) E {H (m (.)). ‘rJ+@‘), 0 E If:,. 
S,], by 3’ (ii. i. 111* t.), 11% (.)) we denote the fundamental matrix of solutions of 

Suppose that the control 71’ (-) E (/I (m (.)), I(‘!:‘)}, the instant i) from the set 
lr,. I?,./ 1.7 ir’ and the point m” E Jloo (I]” (.) 1 t,, s*) are such that o. < w (6, 
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(PO (6). mu) < (,)O* Then we form the set (IO 1 qL I I ), i! } of all vectors 

I, == <& (6, tp* (6), mO) 

as r?!“ranges over the set .fiI~’ ( tl” ( -) 1 2,, x*:). Analogously, we define the sets 

{sa I$ (a>, 6) and (80 (f) I rl” (~1, fi} as sets of all vectors SO and functions SO (t), 
t E Tk,),described by the relations 

SO< -: ~,,‘s (6, t,. (Ilo (.), tjc‘ t-j\ f%ll 
so’ (i) F2 l’,S (6, f, q;” (a), q”(*)) (2.2) 

respectively, as 1, ranges over the set (lU 1 11~ (a ), 1’) ). Then for every v” ( . ) E Q (t,, 

I*, S), t, E Et,, Sol, 4b E id,, ti,J 0 II’ and such that o,, < I’ (t$> X*, O)<w’, 
we define the sets 

SO (t*, J‘*, 6, Y”( *)) - !_I (s,,j1~(,), ii; 
{lL@(,:), T 

(“‘j 
11*,X’*?, 

s, (f,, J*, @) = u SO (t*, T,,,, 6, I? (*)) 
0(1+. **, 0) 

We shall assume the fulfillment of the condition: for every position (&, X*) such that 

tiO ( E* (tyc, X*. < o* and, here, t, s 8 (t*. s.J, and for every probab~l~~ measure 

: (. > on Q we can find an instant 6,, 6~ 8 (, t,, s*> relative to which the following 
two conditions are fulfilled simultaneously : 

Condition 1, There exists a probability measure p, ( +> on I’ .~; 0 , cons&rent 

with j ( -) , such that the inequality 

is fulfilled for each .s” E 8, ft+, I*,, 6,) 

Condition 2. For any program control v” (. ) E cs (t,, t*, 6,) and any 

tlo (*) E {n (v” (*)), T’,“) 1 t,, X*}a the following maximum condition (h is any 

Bore1 subset of Tp)) is fulfilled for each function so (I) -3 {so (1) 1 11’ f * ), 8,) : 

. I 

SSI &,I (t) f (t, (p”(t), 26, V) ri” (dd x du, x CtV) = 
LPQ 

f maxQ mirk Iso (t) / (t, cp” (t), u, v)l rrl (dt) 
h 

We note that every rl,’ (.) E (a (Y” (s)), T,(*) 1 t,, LC*)~, where v“ (-) EE o (&, 
Xx, 6,), satisfies tne minimum condition 

sss so’ (I) 1 (t, (p*(t), IL, 27) Ijo (dt x du x dV) = 
APQ 

’ 
ss 

’ min p Is,)’ (t) f(t, v)“(f), u, u)]@ fdt X du) 

hQ on any Bore1 set A C T, (*)forevery.~,(t)fz (s”(f) In”(.) tr*). 

3, Suppose that a position (t,, s*) and an instant 6 such that f, E ito, it,,). 
6 (13 It,, @,I f-1 T and <I><> ( 8 ft,, .r*:, 6) ( w” and a position (t, X) contained 

in a sufficiently small neighborhood of (t,, x,), where t E T,“’ , have been chosen. 
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Arbitrarily we choose the second player’s controls v” ( -) E CT ( t,, x*, ,6) and Y 0 (. ) A E 
(T (t, J, 8) and we construct the pasted-together program control v0 ( . ) ,,A obtained by 
replacing the measure y” (.) by v. (-)” on [t, 61 X 0. Let 

qo (a)$ E {rJ (vo (.)oA), T:’ I t,, IL.*)0 

&I E Ma0 (To (-joA I t,, J.*), Go (%lA = ‘p (67 t, x*3 rlo (*joA) 

where co (.)“I is the measure q. ( .)o” considered on [t, S] X P X 0. Then by 

(lo*1 30 (.)oA7 6 1 we denote the set of all vectors 

(3.1) 

as moo ’ ranges over fiTgo (‘lo (*)oA 1 t*, x*), while {so* 1 to ( .)oA, S} is the set of 
all vectors of the form 

so*’ = z,*‘s (6, t, Go ( .)oA, i. (.)“A) (3.2) 

as I,* ranges over (Lo* 1 “cy, ( .)“A, S}. We introduce the set 

Lemma 3.1. Let (2,, 5*) and the instant 6 E (t.+, 6,] n T be such that 
Qo < co (t*. s*, S) < aO.Then for any a > 0 we can find 6 (a, t,, CC*, 8) > 0 

such that for every position (t, X) : 0 \i t - t, < 6 (a, t,, II'*, o), 11 z - X* jl -=_ 
6 (a, t,, x*, WY I\ . 11 is the Euclidean norm, we can find program controls v0 ( .) CZ 
CJ (t*, x*, 6) and v. (e)” E (5 (t, x, 61 such that vectors 

so E so (L*, J*, 0, y” (.)) (3.3) 

so*~So*(t, zy,, Axi+‘( vow, 6) 

exist, for which the inequality 

is fulfilled. 

II so - so* j/ < a 
(3.4) 

Proof. We assume the contrary. Then there exist a position (t*. s*) and an instant 
6, satisfying the lemma’s hypotheses, a number CL > 0 , and a sequence ( (tn, s,)} of po- 

sitions converging to (I.!., z*) , such that for each v” (e) t q (t,, z*, 6) and v,, (.)I E u (tn, 
+I, 6) we have, for all IL, 

Ij so - so* /I > a (3.5) 

for any SO and so* satisfying inclusions (3.3). Then we choose vno (.) E (T (tn, xn, IY), 

considering without loss of generality that {:.no ( .)} converges weakly to some v” (-) E 
(J (t*:, I*, t+~, and we construct the controls yn ( .)u71 pasted together from x,0 (.) and 

17no (e), we choose rlo (.V E {II (vO ( .)I?), T,(‘) I t,, x*)” and ~MJ” E M,o(~~ (.)onl t,, 
21) which once again can be considered as converging weakly, respectively, to 

71~ (.) cs {n (x0 (*)), T*‘*’ I t,, r*lo and nzc E M,” (VU (.) I f,, I*), and we construct 
the vectors so”, II with the aid of (3.2) for qo( .),* = q. (.),lL and m0,,-’ = ~L,,,Y and the 
vector sg defined by (2.1) for the resulting q’ (.) and m’. From the weak convergence 
of (1;J.) I”} follows the uniform convergence of the fundamental matrices J’ (6, t, 
‘f 0 ( . I,,‘“, % (.) I’), where ‘p. (t)o” = ‘p (t, t,, z*, qo( .),p) , to the fundamental matrix 
,$’ (6, t, cp”(.), II”(.)). Hence we can show that so”. ?1* so, which contradicts (3.5). 



194 A.G.Chentsov 

Lemma 3.2. Let (t,, z*) : t, i?! 0 and the instant 6 E @ = (7) (i*, ;L *j be 
such that o,, < a0 (!*, 3*) < W” and, moreover, let Conditions 1 and 2 be fulfilled 
simultaneously for an instant 6 for a chosen probability measure g (.) . Then for any 
y > 0 there exists 6 = 6 (y, t,, s*, ti) > 0 such that the relation 

he” = E’ [t] - E’ [t,] < y (r - f:,) 

is fulfilled for every t E [t,, f, -I- b) . Here 

(3.6) 

% (q = ‘P (t, t*, J*, U.)) 

Q(.): rle (G ,l\ A :,; B) = vi (G)p,. (~1 :.’ B) 

for any Bore1 sets G c T,(8), 11 c I’ and B c Q ; for a given i: , !I,,( -) satis- 
fies Condition 1 in the class of probability measures consistent with E( .). 

Proof. Setting I = Qp (I), we estimate the increment of the function F” (t, Z) 
along the motion (F~ (t). Choosing 

v” (.) E (J (i*, J*, a), 70 (? E c (1, I, 6) 

11~ (.lIA E {n (yO (.)o’), T*@’ I t,, x&, ~~~~~~~ E Iw,” h, (.hA I t,, r*i 

arbitrarily, we obtain 

A? G (I) (6, q (0, f, .T, ;,,(&‘), m,,.:‘) - uJ (6, ‘1 (6, t,, & Ilo (+?). 6’) (3.7) 

Here ,:(,( ‘) I’ is the second player’s program control pasted together from zc and vO (. )-‘. 
It can be shown that for any a> 0 we can find h, = 15, (t*, x*, 6) > 0 such that for 

each (t, I) : 0 6 t - t, < S,, /I 5 - X* jj < 6, the inequality 

1 (0 (0, qio (S)uf ??m~) - co (t*, J*) I < CL (3.8) 

is fulfilled uniformly with respect to 

vO(.) E CT (t*, x*, 6), vo(+ E o (1, 2, 6) 

qfl(.)$ E {II (V” (.) P), ?‘ii”’ I I,,, ZJll, mJA E -II,” (VI (.)uA I I:;., s*) 

Taking into account the uniform boundedness and the property of differentiability 

with respect to 3 of the function o (8, 5, m) , with due regard to (3.7) and (3.8) we can 

show that 

where 

Using Lemma 3.1, for each position (t, 2) from a sufficiently small neighborhood of 
(ti:, J*) we can choose a pair of program controls v” (.) E G (t*, x*, 6) and i‘,, (. )’ E 
a (t, J, 6) of the second player such that we find 

SO E s, (1*, I:$, 6, TO( .)), SO* E so* (t, J*, Ax I ‘v” (*A 1‘0 (*) ;, 6) 

satisfying (3.4) ; moreover, such a choice is possible for any a > 0. We obtain the 
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vector SO* by choosing suitable 

%(.)o” E {n (2.0 (*)o”?“), T*(s) 1 t,, x*&j, mooA E Me0 (%I (*joA It:!., 19) 

Then after some manipulations with due regard to Condition 2 we obtain 

A.EO -< r .s,,r 
1 ss f (f*, .7’** 

1’ Q 
I’, 2’) I”, (da x du) -maxQ rninp SO’/ (t*, x*, 14, 8)-j At + 0 (~‘.I\ 

We obtain the lemma’s assertion by using Condition 1, 

4, For each number y we denote by TTY the set of all positions (t, J), t E I!,, $I!,,], 

for which E” (t, 5) < y. 

Lemma 4.1. At each position (ta, x.+.), t, E [t,, Q,], for each numbers >, 0 
we can find 6 > 0 such that for all (t, g) : 1 : - t, / < IS, I/ x - x1 // ( 6 , the 

inequality 

is fulfilled uniformly with respect to ,i) E, [max (t, tJ, .ir,] ri 7’. 

It can be shown that set IV., is closed for each y . 

Lemma 4.2. One of the following two statements is true concerning any position 

(I,, n:,), t, E It,, f:,l : 
a) the instant f, EZ B (r,, s*) ; 
b) for any o > 0 there exists 6 > 0 such that 

f go (6 4 - 8 ft*, z+f / < a for 0 < t - t, < 6, jj z - :r* 1 c 6 

for each (i. z) . 

Proof. Suppose t, E 8 (t*, ~$1. Using the lower semicontin~~ of a” (f,, x*7 6) 
with respect to 6. we can show that 0 (t+, r*) is closed. Then ;! I-> U exists such that 

lla, t, + %) n @ (t *. x*) = $. With due regard to Lemma 4.1, for any u > ij we can 
find 6, 0 < S < x such that I E’ (1, I, 6) - e” (t*, J*, S) 1 < a uniformly with respect 
to f+ E [t, 6,l n T for all (t, 5) : 0 < t - t* < 6, 11 x - Jo* 11 < 6 ; whence follows 
satatement (b) of the lemma, with due regard to the fact that 8 (t*? rl,) i_ [r, a,J n T . 

Lemma 4.3. For any position (f,, z.+) E TV., , a0 ( 1: ( CO’, for every num- 
ber (I “, It not exceeding some a, ;> 0, for any instant 1 g .s If,, ,:I,] and any pro- 

bability measure c, - ) on Q , one of the following statements is true, relative to the 
family of program motions XA f& , xg, vc ( *)‘I generated by the program ’ II (v: f -)I, 

~11, where A = ft,, t*l and V? (G :-: I?) = m (G) 5 (r;t) for any Bore1 sets G c A 
and B E Q: 

a) there exists rptt (t) :E XA (f,, ,z+., vI (.)) and an instant I!~ E A n T such 
that 

b) there exists cp,” (2) EXA (t*, zK 2‘: (. )) such that (t, cp,” (t)) E IV,,, (!_,,) 
for all t 8~ A. 

Proof. We choose Q,, as follows: let p > 0 and 1’ < (J’ - R, then CL,, .= “i(6, - 
l,,). Let us assume that the lemma is incorrect-for the given on. Then we can find a 
position it,, I*) E ii’,, an instant t* , and a probabi~~ measure $ (.) such that state- 
ments (a) and (b) of the lemma are simultaneo~ly violated for some x : 1’ e-c cc c- 1 q). 
This signifies that for any Q (t) E S, (f*, se, yE (.)j we can find the first instant r?: 
t* < lw < t* such that for any b’ > 0 in the semi-interval CT+,, zq -i- d) we can find 
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ts such that F~ its. 1. ::,)t > y +- TX. (ts - l*f , because otherwise statement (b) would be 
fulfilled 1 Because ‘51 Y,_a(s,p_t,) is closed the position (rip, cp (r,)) is contained in 

fI’-f+a(sgl-l,)* Let T, -= masr,p in the class q’ (t) EX, (t*, xt, v4 (,)) and let g(t) be the _ 
motion from Xh (t*, x*, vF(. 1); realizing ~cL. By assumption r4. s 0 (rE, q (r,)) and by vir- 

tue of Lemma 4.2. oO < E” ir:. @ (T,)) := y -,- a (re - 1,) < 0’. Then we can find an 
instant 3 E 8 (zE, q (~~1) relaiive to which Conditions 1 and 2 are fulfilled simultane- 

ously and, hence, so is Lemma 3.2, taking which into account we arrive at a contradic- 
tion with the fact that tE = ma.y 7.? on X, (tl., J*, vI I;,). 

Lemma 4. 4. For any y : coo -.Q y < coo the set w., is zr-stable for any position 

(t*, X*) E IV,, any instant t” E I/,, ii,)] and any probability measure g(v) onQ, 
one of the following two statements is valid for the family X2 (t*, I.+, vp( a)) : 

1) there exist q(t) E X3 (t*, X,, YC (-)) and an anstant 19, E An T such that 

min .+I~ 63 f@*, rp (6*), 4 6 Y * 

2) there exists rp (t) E XA (t*, czar YE(-)) such that (t, cp It)) E W.,. for any 
2E A. 

The proof follows from Lemma 4.3 and from the fact that the family SA (t,, x+., 
v; ( - )) is compact in itself. 

The following theorems are proved analogously as in [4 - 61. 

Theorem 4. 1. Let w,, --< S .= 8” (to, zO) < 0’. Then the counter-strategy 

c’,.” realizing the extremal sighting on the leading motion solves Problem 1. 

Theorem 4. 2. Let cl10 < S = So (t,, x0) < w” and let a saddle point exist in 
in the small game. Then the strategy U” realizing the extremal sighting on a leading 

motion solves Problem 2. 
Let 0) (8, z, 1?2) = /j :r - m 11 for all @ E f t,, 8 0], where M <? :%I, and -11, is 

a closed subset of R”. Then Problems 1 and 2 are problems of wsition encounter with 
se{ M, by instant $1,. The possibility that in the given case *‘If,, is noncompact is un- 

essential because the problem reduces to the problem of encounter with some compact 
subset of .!I, . 

6. Problem 3. Given (t,, z,,)? ‘8,,>1,, and F , find strategy 17’ guaranteeing 

minr min.,I, CI) (6, &T~TO [?‘t 1, m) > t: 

for every motion .TI,‘O [t] . 
Problem 4. Construct a strategy pair (C!‘“, I.“) such that the inequality 

Snpi,.O vlrjj I~lin~i~li~,,~~~,) (6, z~:o, \r [8jl It!) . _ 

minT win~r,o~(~f, so IS], ni) -< infix,. i-alt~; minT llliIIL~~\!,i~r (I?, xl’, vo I;*], m) 

is fulfilled for every motion :c” [t] .= .C’rj’, ~0 It] . 
It is well known that to solve Problem 3 it suffices to construct a r*-stable [3] system 

of sets and to choose as V” the strategy realizing the extremal sighting on some leading 
motion [6] maintained in this system of sets, Problem 4 is successfully solved if Condi- 
tions 1, 2 are fulfilled together with the conditions sufficient for solving Problem 3, In 
case AI, is a closed set in space f?“, while w (19, TC, m) = 11 x - m 11, Problem 3 is 

the usual evasion problem [ 31 and Problem 4, respectively, is the encounter-evasion prob- 
lem with the target set Al,. 

Lemma 5.1. For every position (t,. z&) the function e’ (t, a~) = &nit. auln~r.&o 
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(f, zr, 6) satisfies the following condition : for any number a > 0 there exists 6 = 

6 (a, t,, x*) > 0 such that 

ED (t*, x*) < a + E0 (t, z) 

for every position (t, z) : 0 < t - t, < 6, I/ x - 5* 11 ( 6 . 
Lemma 5.2, For every position (t.+, x*) and any number ct > 0 we can find 

6, ‘-= 6, (t*. z*) > 0 such that 

(4 (t, .z) c G)” (f*, XT*), 

where t-P is the r~-neighborhood of set V-J , for any position (t, X) : 0 < t - t, ( 

L I/ ‘r - xy: /j < &I, E0 (f, .z> G, E0 (t*, z*> f 

The lemma is proved by contradiction, using Lemma 5.1. The condition e” (t, .r) -< 

co (&, &) is highly essential. Indeed, if we examine the scalar system 

w (6,x, m) = 1 x - m 1 for 6 = 6r and 19 = 6, 

and the set IV = 16,, Ma,1 U (O,, M,,], where 6r < 6,, M,, = [U, ~1, M,? = (i)), 
) I,, 1 s. p, / L‘ 1 *-< v, and, moreover, I_L -+ *I < a / (6, - 6,), then the set @ (6,, u) -z [61] 

for the position (6,, a) , while 0 (1, I) = (6J for every position (t, X) along the motion 

from position (6,, a) for t > 6, . Note that for a fixed position (t,, z*) the set c (&, G, 

@) cannot possess, as I? varies, the property of weak upper semicontinuity by inclusion. 
For example,in the system 

ds! clt = U - L’, 1 u 1 -:,- p, 1 L‘ 1 < Y, t E [O, @“I, Y > p 
M, = $5 for 6 < +I1 < Go 

J-1,* (.F: x 4 01, nr --= {k (6 - 6,)) for 6 > 6r, k > U 

for the position (f, z= 0, I,, 77 0) the second player’s optimal program control relative 

to the instant 6 > til is roptcf) -;: f 2’ almost everywhere and is unique, while relative 
to the instant 6 = IY~ it is t’ot,t (1) -: -v almost everywhere and also is unique ; note 
that at the point 6, the function 

E6 (41. 50, 6) = (Y - [L) 6 + k (6 - a,), 6 E ifi,, 901 

is right-continuous in 6. 

6. We make the following auxiliary constructions: together with a position (f,, s*) 
we consider a neighboring position (t! x), t II t.+. Let 0 E ;-) (t, x), v. (.) E 
CT (1,. .I‘:$. 0) , let measure $,, ( . ) in (E (m f . >) 1 i:, $tj) coincide with v,, (m) on 

It, ff 1 :-: Q ,let qt, (.) E (it (VO (e)), it, @I 1 t, .rj,,, S., 3 iIf2,0 (3,, (-) / t. s). 
By S* (f. J, 1 f:,:. zb) we denote the set of all vectors se of the form 

(6.1) 

as 0 ranges over (-1 (t, J.) , v o ( . ) ranges over 5 (t,, .z*, I’)), q. (. ) ranges over 

{II (‘jO (.))> It, 01 I t, r>o and 1X0 ranges over Xuo (“lo ( -) 1 t, x), Such sets can be 
constructed for all positions (t, z),t > t,, E’ (t, s) -< F’ (t,,, R.*), from some neighbor- 
hood of (t*, .f.& c+)n < E“ (t+., z,) < (1)‘. 

We assume that the following condition is fulfilled. 
Condition 3. For every position (f,, x*) such that bird < E* (t*, “*) < ij>O 

and for a probability measure 9 ( *) on I-’ we can find a probability measure g (e) 
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on P ,< Q consistent with p, (e) and such that for any number G .>, u there exists 

6, =:- b, (f,, “1’*, E (.)) > 0 along the program motion qz (t) r-7. q (t, t,, .I‘.+, 11; (.)) 
and that for every position 

(f* ‘&Z(r)). t ES [t,, 1, + A,), E'(t, vi(f)) :< E' (f,, J.,+) 

we can find a vector s* E s* (t, cfc (t) 1 t,, J*), satisfying the condition 

Here Q (.) is a program control for which ?]t,t (a) $ ( .). Let us present more 

intuitive conditions under whose fulfillment Condition 3 is satisfied. 
Condition 4. The sets o (t*, x*, 0) are weakly upper semicontinuous by inclu- 

sion at each point 6, E (9 (t+, x*) for every position (t.+., s*) such that (I)~ < e” (t*, 
“‘*I < 0,” 

This condition is always fulfilled when 1110 varies continuously with varying 6, when 

nl = ; {S,,, X,,J 
I 

and, in a large number of other cases, when lIla does not possess the property of conti- 

nuity in 0. 
Condition 5. For every position (oO < E’ (t,, x*) < 0)‘) , for any probability 

measure p (. ) on 1’ we can find a probability measure $ ( .) on P X (I, consistent 

with it, for which the inequality 

(6.2) 

Lemma 6.1. Condition 3 is always fulfilled when Conditions 4 and 5 are fulfilled. 

Proof. We choose any position (t*, z*) such that % < a0 (t,, za) < oc and for 
neighboring positions ++ (t, z), t > t, and e” (t, 5) < a” (t*, J*) , we examine the sets 

,.c* (t, 5 I 1,. +, I*). Let us show that for any a > 0 we can find 6, = tig (t*, x*) > u such 
that s* (t, I I t,, J*) c sua (t*, x,1 

for every position(t, z): 0 KS t - t, < 6,, 11 1 - I* 11 < 6,, co (t, I) -< 8 (t*, %).In fact, 
let us assume the contrary. Then we can find {(rnr z&l) satisfying the above-stated con- 

ditions and such that (tn. zn) ---) (t*, x ;-) ; moreover, for each ;. there exists sn E S* (t,,, 
5, 1 t,, z*) such that 

II sn - so II > a (6.3) 

for every s0 E So (1,, z+) . This signifies that 

exist for which sn is expressed by (6.1). 
Without loss of generality we can assume that the sequences {&J and {&“I converge 
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6, - 0, E 0 if*, xd, E $,’ + m” EYE Ma, 

and that the sequences {%“(e)f and {&’ ( .)} converge weakly, respectively, to the prog- 
ram controls 

Thus, 

‘1” (.) E P (v*(*)), I&, 6,) I t*, %.to 

no E ATli. (n’(s) I t,, GA 

Then, a vector so of the form 

6.4) 

S,j’ T: 
I 

G0.I (6,s cpO (@*), nkO) 1 
‘s (6*, t,, ‘p” (*)* no (*)) 

belongs to A’,, (t*, .z*). From the weak convergence of (?jtko( .)} to q” (.f, as well as with 

due regard to tn ---f t*, 6, - 6, we obtain 

liI~~,,II S (V,, t,,Tn” (.I, a,” (*)I - S (a*, f*, To (.), 11” (~1) II = 0 

But then su = iim, s,, which contradicts (6.3). Hence follows the validity of Condition 3, 

We note that S* (r, x 1 t,, 5.J = S, (t+, XJ for t = t,, I?: = x*. 
The fuifillment of Condition 4 is highly es’sential because in the general case the prog- 

ram control v” (.) may not belong to the set o (t*, x*, 6,) , as we see from the exam- 

ple of the linear system dx / dt x 1~ - U analyzed in Sect. 5. as a result of which con- 
dition (6.2) may not be fulfilled on a vector so constructed by means of (6.4). We can 
waive Condition 4 if we require the fulfillment of (6.2) on a properly augmented set of 
vectors so. 

Lemma 6.2. For any position, oO < aG (t*> x*) < o)O, and for a probability 
measure p (.) on P ,the bound E’ (t, vs (t)) - E’ (,2,, d,,j > o (1 - t*) = 
0 (At), where o (t - i+) / (f - t,) -+ 0 as t --f t,., is fulfilled along the motion 

(r; (0 = V (t? t,, x*, I]: ( * )j, where g ( a) has been chosen from Condition 3. 
Proof. Set .r =~ fiE (t) and let co (i, z) < e’ (tu, z*). For every 

6 E @ 0, r), vgt.) f 5 (t*, x*7 6) 

where qO { .) is any program control of player 1 from {I1 (T,, ( .I), [I,, fi]f coinciding 

with $I(.) on ~1, 01 x P x Q . 

‘~0 (6) = Fo (6) + s (6, t, % (.], Go (.I) (Acpo - Ax)_+ 0 (At) 

where 
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By choosing 1 from a sufficiently small neighborhood of t*, we can take it that w (0. 
I, 111’ is differentiable in z at the point (6, ?j,, (6), G,,) for every 6, v,, (.), flu (.) and 
t;,, satisfying inclusions (6.4). Then we can show that 

SF. =: r,* (‘, 3’) - P (I,, .I‘%) -, 

for any S* F_ s’* (t, s 1 t,, z*) when P (I, .z) < co, (t*, z,).Since the control lie (.)E 
(11 (vu (.)), [l,, 01) can be chosen arbitrarily on [t.+, t] x IJ x r\i , we obtain the lemma’s 

assertion after simple manipulations with due regard to Condition 3, 

7. For each y by IV.{* we denote the set of all positions (t, X) for which E” (t, 
z) > 7, The set Ii’,* has closed sections ti’.;.” (t). If {(fk, zk)} c [try* and {tk} 

increases monotonically, and, moreover, if ( t I!) xfi) + (f,, z*), then(I,, x*) E ik:,*. 
For each probability measure p ( . ) on P, position (t, , .ryc) , and instant 1.” tin [ 1,) it U ] , 

bY x, (t*, J*t t*) we denote the family of program motions on i !*, t”‘] generated 

by all possible controls q ( . ) 1% { ff (nl : . ,;I. It,, t*l} consistent with 11 (.) ; 
11 (I’ x ;l x Q) = m (ly 1” (A) on any Bore1 sets I’ C1 It,, 1’ i and 21 C 1). 

Lemma 7.1. For every position (t*, J..,+) E Ct’-;:S, CL),, ( y < (1)’ , for any pro- 

bability measure 11 (e) on 1’ , and for any number c(, 0 ( U. /:Z v,~, there exists a 

program motion cfz (t) E XL,. (t*, xycr t”) on ir,, r*] such that ~“(t, (pJ(t)) :I.- 7 - 
o (t - t*) for any t E ]t*, t*]. 

Lemma 7.2. For every y, 0~” < y E+ od, the set I$‘.,* is ~‘-stable: for any 

position (t*, x.J E IV_,*, probability measure p(e) on P ,and instant tV t 11,. O,,] 

there exists q” (t) E X, (f*, x*, t*) such that (t, (DO (lj) 2 II’-i:K for 1 E IL,, !*I. 
Let the small game [3] possess a saddle point. 
Theorem 7. 1. If OJ~ ( E’ (to, a-,) = E < OJ‘, then the strategy 1” extremal 

to I\-,* solves Problem 3. 
Assume that conditions 1 and 2 are fulfilled together with Condition 3 and that c,“’ is 

a strategy extremal to the system of sets of program absorption It’, (1) = {X : co (t, 
x) < E}. 

Theorem 7. 2. If oO ( ei (1,. .z,,) = E < We, then the strategy pair (L’“, 1”~) 
solves Problem 4; moreover, for any motion XI;“, ~‘0 ]t] 

minT minj,,, (0 (9, 51 0, 1.0 ]*I, 77)) = e 

The author thanks N, N. Krasovskii for posing the problem and for attention to the work. 
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In the problem of the motion of a rigid body with one fixed point in a central 
Newtonian force field (in particular, in the de Brun field [I 1). The existence of 

a family of periodic solutions is proved by the Poincare’ method of small para- 
meters, It is assumed that the body differs negligibly from a dynamically sym- 
metric one and that its center of gravity is sufficiently close to the fixed point. 
The proof is carried out by using the techniques of Hamiltonian systems, 

We investigate the motion of a rigid body around a fixed point in a Newtonian gravity 
field, making use for this purpose ofthe canonical Deprit variables [2] which we introduce 
as follows. Let OxT’Z be a fixed coordinate system with origin at a fixed point 0,. 
whose Z-coordinate axis is directed vertically upward, and let Oxyz be a system of 
axes directed along the principal axes of inertia for point 0, Further, let ‘p, ‘1, 0 be 
the Euler angles defining the position of the moving system O.cyz relative to the fixed 
one. We introduce a plane containing point 0 and perpendicular to kinetic moment 
G. The position of this plane is given by the longitude h of its nodal line on the OXY 
plane and its inclination f to this same plane. Finally, we introduce two more Euler 
angles defining the position of the moving system of axes relative to the plane perpen- 
dicular to the kinetic moment : the angle of self-rotation I and the nutation angle b. 

As coordinates we now take the angles I, 6, ZL introduced, The canonical momenta 


