UDC 62«50
ON ENCOUNTER=EVASION GAME PROBLEMS

PMM Vol, 38, N2, 1974, pp,211-223
A,G, CHENTSOV
(Sverdlovsk)

(Received August 6, 1973)

We consider a nonlinear encounter-evasion differential game on a finite time
interval, To solve it we use an auxiliary program construction, The article is
closely related to the investigations in [1 — 8],

1, Let the motion of a conflict-controlled system be described by equations of the
form dzjdt = f (¢, z, u, v), [t = x,
z=R", uesPCRP, veQCA?

The sets P and () are assumed to be compact, while the function f (-) is assumed to
be continuous in the aggregate and continuously differentiable in x. We assume that
every solution « (Z) of the equation

de(jdt =co {y:y =1t z(t), u,v); ve P.reQ}

under the conditions z (¢,) & K. t, & [¢,, ¥,] is uniformly bounded on [7,, 9ol
by a number f (¢,, K, 9, for every bounded K C R",

A function o (9, x, m)is given onthe set {(0, o, m): ¢ = T, 2 = R, m =
My} Here the sets 7' C [t,. &,] and M = {(O. m): 0 7= T, m & My} are as-
sumed to be compact, while the function ® (-) is assumed to be continuous in the aggre-
gate and continuously differentiable in 2 in the region v, << w <C w° The first
player, by choosing the control u < P, the instant § & T, and the point m & My,
strives to ensure the inequality o (¥, 2 [9], m) < &, where & is a given number, The
second player chooses a control U&= () and pursues the opposite goal, Analogously to
[2] we identify the first player's strategy / with the function U (¢, «) C P. Every
uniform limit of the Euler polygonal lines x,(;, [¢] satisfying almost everywhere the

equation dr iy [t)dt = [ (t, ) |t], w [T, o [2])

() W - ; ; ;
Teh— WA, w [t e U (W, 26 1)

vt & Q is measurable
is called a motion z [t] = ay; [t] = & [¢, ¢4. 2y, U] . Here and below {A;} isa
sequence converging to zero (A; > 0).

The counter-strategy (/, is identified with a function U, ({, &, ) C P, while
every uniform limit of the Euler polygonal lines x ;) [¢] satisfying almost everywhere
the equation

q dr iy [t]/dt = f(E, Ty 1], wg, v [2])
te= (), Th, thh — WP <A,
U, V[t &= Q are piecewise-constant
up E U, (7D, 20y [1,0), v [2])
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is called a motion « [#] = 7 [t] == & [, £, ».. {7, |. The second player's strategies
V and the motions x [¢] = zv [t] = z I¢, t,, 2, V] are defined analogously with
the natural alterations in notation,

Every uniform limit of the Euler polygonal lines r ,(;, [¢] satisfying the equation

A gy 101/t = [ {8,z 1), e (17], v [777)
witd ]S U, ()
M EVEY, 2 1Y)
W — <A, T,
is called the motion z [{] = zy;, v [¢] generated by the strategy pair (U, V).

2. Problem 1, Given ¢, r, and ¥, , for a specified number € find the counter-
strategy {/,° guaranteeing for any motion zy o [¢] the fulfillment of the relation

o (O, rys [0], m) < e
forsome 0 = T, m & Ms.

Problem 2, Given £, 2, and ¢,, for a specified number ¢ find the strategy //-
guaranteeing for any motion . |¢] the fulfillment of the relation

o &, a0, m)y <«
forsome O = T, m —= Al,.

Problem 2 is solved under the assumption that the saddle point s'f (-) of the "small
game" [3] exists, Analogously to [4], we construct a stable system of sets I}'. for solving
Problems 1 and 2, Then under the condition that (¢, .«,) & W, Problem 1 and, respec-
tively, Problem 2 can be solved by means of counter-strategy (', or of strategy (/°
which, analogously to [5, 6] realize the extremal sighting on some leading motion con-
tained in set 1V, up to the realization of the payoff ® - & by the first player,

To solve the position game problems posed we use the following program construction,
For every f, == |fy, 0,] and ¥ & [¢t,, o] we define a class {f (m (-)). T} of
program controls 1 (-) as the set of all regular Borel measures on 7,(*) X P % Q,
where T, = [z, 9], having a Lebesgue projection on 1 ,'*): for any Borel set

GC T W (G X P < Q) =m(G)

where m (.) is the Lebesgue measure on a straight line, We identify the class
{L (m (-)), T4} of the second player's program control with the set of all regular
Borel measures v {-) on I,.* < (), having a Lebesgue projection on 7",

For every control v (-) €= {£ (m (), 7T4™} we define the program {1I (v (.)),
TN} as the set of all measwres Y (+) & UL (m (:)), T«™} consistent with mea-
sure v (-): for any Borel sets A ( 7. and B C Q

W(A ¥ P X B) =v(AXB)

Analogously to [7], every absolutely continuous function satisfying almost everywhere
the equation dofdi - - \ \ it xw, )y (de X de)
P Q

where 1), (-) is the conditional probability measure [8] corresponding to a given con -
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trol 1 (-): for any Borelsets G C T,®, A C P andB C Q

WG L AX D) -——S m(dt)yn, (A > B)
G

where m (-) is the Lebesgue measure on a straight line, is called the program motion
@ (t, 14 24, m () foreach n(-) = {H (m (- U T.®} on the interval . 7,97,
It is well known [8] that such a motion exists and is unique tor every 31 (. Y= {H (m ( ),
T

For the program {1 (v (-)), 7,®} we define by G (¥, f,, 24, v (-)) the attain-
ability region at instant ¢ < {z,, ¥y} . This is a compact set in R" for every measure

Yy EAE (m (), T.®}, We define the following function:

e° (/*, X ger ’O) — max (9)’111 nG(\‘J Lger Xty v00)) mmug(o (’ll} r, m)

im4), T
t* KE [t()y ﬁ‘o]v ﬁ E [t*v

The control 1° (+) = {I1 (v (-)), T,®} is said to be optimal in the program for the
instant & < 7T [ lt,, O,) if

min),&m (ﬁ, (PO (ﬂ), m) = IIlil'lG(gy Tgr X ¥(o)) minMaco ('U, x, m)

(PO (ﬁ) = ¢ (ﬂv t*v X ey lrlo ('))
By {II (v (-)), T»| ty, T4}o we denote all the program controls optimal in
{11 (v (+)), T ¥} for the position (¢, 7,) and for the instant . For each n(-) =
{H (m (-)), T4*} we form also a set M ° (1 (+) | t4, Z,) as the set of all points
m” & /., where U <= |4, Oy [} T, for which
o (0, ¢ (), m°) = miny, o (¥, ¢ (3), m)

Every control v° (-) & {£ (m(-)), I',® } satisfying the equality

. : — a0
minge. 1, x,, v (- MiNAEO (¢, z, m) = €° (ty, 2,4, 9)

is called the second player's program control optimal for the instant ¢ and for the posi-
tion (f,, Zyx) . It can be proved that the first and second players' optimal program con-
trols exist for every position (fy, T4) and instant ¢ < [ty 90 N T

By O (fy, &4, ) we denote the set of all the second player's controls optimal for
position (¢,, z,) and instant O . It can be shown that for a fixed & <= [¢,, O, (1 T
the set ¢ (¢, z, U) is weakly upper semicontinuous by inclusion as the position changes,
For a fixed position the function €° (f4, ¥4, ) is lower semicontinuous in . We
denote (¢, .r,) = MiNpy 9,777 & ({,, Ty ).

We introduce the set O {f,. .} C [{,. &, | {17 of all instants {), such that
% (Lae Ty Uy) — €% (1, 1y). For every 2W* () & {H (m (-)). f(‘9> IE=NV"
Bol, by & (70 ¥ (), % (+)) we denote the fundamental matrix of solutions of

1\ A . 0 T
i—;[(—” = i 3 Wf(t’ ©F (2), u, v) Ox (F) n* (du < dr)

rQ
Suppose that the control w° (+) & {// (m (-)), 7i"}. the instant U from the set
{tye. B0 (1 7 and the point m° = M (3 () |1*’ xr,) are such that 0o << (9,
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@ (). m9) << ©°.  Then we form the set {/o | 1" (-), U} of all vectors
%
Lo = 70 (9, ¢° (8), m9)

as m”ranges over the set 4° (1° ()] /,. 7). Analogously, we define the sets
{so Im°(+), 8 and {s (#) | n°(-), &) as sets of all vectors s, and functions S; (2),
t &= T'®), described by the relations

se = 4SOt 7 (), T N (2.1
s (8) == U8 (9, 8, ¢° (4) n° (+)) (2.2)
respectively, as [, ranges over the set {{, | n° (+), #}. Then for every v’ () €2 0 (£,

Ty 0), ty & ltg, Ool, § = 1ty Bo) () 7 and such that 0, < e7 (Y4, Ty, ) Lo,
we define the sets

Sy (5*) Ly 4, VO(') == (L {s, i }lo(‘}s oF
IO T:‘l}{l*,x,}o
Sy (f*, Ty ﬁ') = U S, (f*, Ly &, v ())

o(le, Xy &)

We shall assume the fulfillment of the condition: for every position (4, 4) such that
0g << &% (ty, x,) << ®" and, here, t, = © (4, r,), and for every probability measure
£(-) on ( we can find an instant §, = © (¢,, z,) relative to which the following
two conditions are fulfilled simultaneously ;

Condition 1, There exists a probability measure M, (-) on >.() , consistent
with (-}, such that the inequality

S‘.;'S \ Fllgr ro t, YR (A 2 de) < maxg mingsy'[ (Fy, T4 U, V)
PO
is fulfilled for each sy & Sy (L4, Ly, Oy)

Condition 2, For any program control Vv° {+) & ¢ (1, z4, ¥,) and any
N° () = {IT (v (), TP | ty, T4} the following maximum condition (A is any
Borel subset of 7'W) is fulfilled for each function s, (1) == {8, (&) | 1°(+), Vu} :

OO s £ 0 @), w, ) v (d X du X dv) =
APQ

{ maxq minp [s/ )/ (¢, (1), u, v)Im(d0)
A

We note that every m° (-} &= {IL (v° (+)), T4® | f4, 24 )0, where v° (-) &0 {lw
Zy, Oy), satisfies the minimum condition

SS S o’ (8) f (&, @7 (2), w, ) 07 (dt X du X dv) =
APQ

\ Ymine (50’ () #(£, 9°(0), w, v)I¥° (dt X dv)
A Q

on any Borel set A C T4 for every s, () = {s, (1) | 0" () e},

8, Suppose that a position (f,, ¥,) and an instant ¥ such that ¢, & [£5, U,).
G 02 Tty Ol 1) T and g <2 ° {£,, 1y B) < ©° and a position (£, &) contained
in a sufficiently small neighborhood of (f4. y), where t & T'4'® , have peen chosen,
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Arbitrarily we choose the second player's controls v° (-) € 0 (4, Zy, ) and v(- )=
o (¢, x, ) and we construct the pasted-together program control v, (-) * obtained by
replacing the measure v° (-) by Vo (+)* on [£, 9] X Q. Let

M ()0 & T (W0 (o), T |ty 2430
m‘vo = Mg° (nO(')OA |t*, 1“'*), 50 (ﬁ)oA = (P(‘()v t, z,, 17]0 (‘)OA)

where v, (-),> is the measure 1, (+),® considered on [¢, 3] X P X (. Then by
{1e*1 Mo (+)o®, U } we denote the set of all vectors

L = L 0.(8, 3 (9%, m) (3.1)
as my,™ ranges over Ms® (Mg (+)o® | txs T4)s while {so* | 1y (+)o2, O} is the set of
all vectors of the form , , - -

so* = L* S (B, £, 9o ()™ Mo (+)o?) (3.2)
as [,* ranges over {{;* |7, (-),®, 9}. We introduce the set
Sy* (t, 2y AX[V(2), o (+)?, B) = U 0* | Mo ()0

(3, T s mo

Lemma 3,1, Let (t*, Z4) and the instant O & (¢, O,] () T be such that
©o<T€” (4. 2y, ¥) < ©°.Then for any & > 0 we can find 6 (a, ty, z4, ) > 0
such that for every position (#, 2) : 0 <t — £, <O (0, 1, 2., 9), |z — 2| <
d (&, ty, 4, ¥), || - | is the Euclidean norm, we can find program controls v° () &
G (ty, Ty, 3)and v, (+)* & o (¢, 2, ) such that vectors

S0 = S (tyr Tyr B, V() (3.3)
S“* ESO* (l" Loy Ax ivo(')v \'0(')A’ ﬁ)

exist,for which the inequality

“ So— S Ii <a (3.4)

is fulfilled,

Proof, We assume the contrary. Then there exist a position (.. r,) and an instant
9, satisfying the lemma’s hypotheses, a number « > 0 , and a sequence {(t,, z»)} of po-
sitions converging to (t.. z,) , such that for each V° (+) € 6 (ty, z,. 9) and Vo () E 0 (tn,
zn, 9) we have, for all =, 10— s[> a (5.5)
for any s, and s,* satisfying inclusions (3, 3), Then we choose v,° (:) & 0 (t, zp, 0),
considering without loss of generality that {v,° (-)} converges weakly to some v° (-) €
O (14, 74, ¥, and we construct the controls v, (-)," pasted together from +° (.) and
va® (+), we choose 1y ()" € {II (vo ()0), TP t4, 22lo and mw’ € M (Mo (-)o™ | tx,
zx) which once again can be considered as converging weakly, respectively, to
N () E{IT (), T [ ty, x4} and m € Mg° (u (-) | 14, z4), and we construct
the vectors sg,. with the aid of (3,2) for ny(-),® = no (-)»* and me™ == mw" and the
vector s, defined by (2, 1) for the resulting 17 (-) and m°. From the weak convergence
of {¥.(-)"} follows the uniform convergence of the fundamental matrices & (&, ¢,

o (-)o"s My (1) "), where Qg (£)o"™ = @ (2, Ly, Ty, Mo(-W™) , to the fundamental matrix
S (0, t, ¢ (), 1(-)). Hence we can show that $0,n — s, which contradicts (3.5).
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Lemma 3,2. Let (fy, &4) @ tyx €= O and the instant ¥ € O = O ({y, x,) be
such that w4 << g7 (fy, Tx) < ©° and, moreover, let Conditions 1 and 2 be fulfilled
simultaneously for an instant ¢ for a chosen probability measure § (-) , Then for any
y >> O there exists § = 8 (Y, t4. ¥4, U) > 0 such that the relation

Ae® = & 1] — e [l <y {{ — ) (3.6)
is fulfilled for every ¢ & [ty, 1, -- 0) . Here
e [t] = &° (¢, q. (1))
Qe (1) = @ (I, Ly T3 M(+))
Ne(+): e (G ~ 4 22 B)y=m (G)u. (4 - B)

for any Borelsets G ( 7T,'®, A (P and B C Q ; foragiven 0, p(-) satis-
fies Condition 1 in the class of probability measures consistent with §(-).
Proof, Setting z = ¢, (!}, we estimate the increment of the function ¢° (¢, z)
along the motion @, (¢). Choosing
V() E O (ty, 240 ), ¥ () E 0 (L, 7, 9)
Mo (')JA e {I (v (')UA)v T*(B] | tyes Zatos mWA e AMOO (Mo (')UA | 14, 74}

arbitrarily, we obtain
A <0 (B, g (0,4, 2, (oY) mu®) — 0 (8, ¢ (8, 1 2x0 o ()0 ma™ (3.7)
Here v.(-)" is the second player's program control pasted together from v¢ and v, (- ).
It can be shown that for any @>>0 we can find &, = &, (¢4, Z4. ¥) > 0 such that for
each (4, 2): 0 <t —t, <8, [lz-— 24l <9, the inequality
Lo (8, To (9, moo™) — &° (ta, 74) | < & (3. 8)
is fulfilled uniformly with respect to
Vo(+) € U (ty, z*, D), vo(-)A eo(,z 0
1o (o™ € 1T (v0 ()2), Tty 2 do, mo® € M g® (o (D™ [ Lay 24)
Taking into account the uniform boundedness and the property of differentiability

with respect to z of the function o (%, z, m), with due regard to (3, 7) and (3, 8) we can
show that
A& < IS (B 1, T ()2, T (0™ (Ar — Aqur®) £ o (D)
where )
I* = -(;_¢ o (%, ¢ ({)‘)UA, mag™)
i
Aqu™ = S \ \ Fr, @o(0)o, u, ) o (dr Xdu X do)®
tx PQ
Using Lemma 3,1, for each position (¢, z) from a sufficiently small neighborhood of
(ts, T4) we can choose a pair of program controls v°(-) € G (L4, 74, ) and Vo) e
s (¢, =, ¥) of the second player such that we find

So e SO (’*v Loy ’&1 To('))s so*f & So* (tv Ty Ax l Vo(‘)v Tf)(')&, ﬁ)

satisfying (3, 4); moreover, such a choice is possible for any « > (), We obtain the
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vector so* by choosing suitable

Mo(- 0™ € (I (v (-)0°), Tul® | ta, 2ado, mos® € Ma® (10 (- Ltsr 2)
Then after some manipulations with due regard to Condition 2 we obtain

-
Ae® «;’Ls(,' §)§ f(tey @gy u, YR, (du x dv) — max, minp 50" (Tay Ty, U, v)} At 4o (L0
We obtain the lemma's assertion by using Condition 1,

4, For each number ¢y we denote by W, the set of all positions (¢, »), ¢ < I7,, ¥,],
for which £° (f, z) <C .

Lemma 4,1, Ateach position (f,, z,), 1, & |y, ¥,l, for each numbera > 0
we can find § > 0 such that forall (¢, z) : | ¢ — £ | <T8, | & — 24| << 8, the
inequality

€% (1, z, 0) — € (¢, o5, )| < @
is fulfilled uniformly with respect to ¢ < [max (¢, ¢.), U, [} 7.

It can be shown that set W, is closed for each y ,

Lemma 4,2, One of the following two statements is true concerning any position
(tes mx)y 1y € tg, V0l

a) the instant 7, = O (fx, Z4) 3
b) for any ¢ >> O there exists § >> 0 such that

[ € (1, 2) — € (te, 24) | << @ for 0t — 1, <8, o —a,]<<8
for each (¢, z) .

Proof, Suppose lx & © (24, z,). Using the lower semicontinuity of € {f,, 7,, 9)
with respect to ¥, we can show that © (¢, z,) is closed, Then 7  ~ U exists such that
[t te + %) 1 © (t4. 74) = . With due regard to Lemma 4, 1, for any = >  we can
find 8,0 <6 <y such that |&° (¢, x, B) — &° (14, 24, ¥) | < « uniformly with respect
to b, ¥l N T forall (t,2) : 0t — tu <8, |z — 24| <8 ; whence follows
satatement (b) of the lemma, with due regard to the fact that © (¢, r,) L, %l O T

Lemma 4,3, Forany position (7, z,) = W., o, <<y < «°, for every num=-
ber ¢ - () not exceeding some @, > 0, for any instant ;* == [#,, ;] and any pro-
bability measure £, .) on () ,one of the following statements is true, relative to the
family of program motions X {#;, x4, vz {-)} generated by the program ‘Il {v:(.)),
A}, where A = [y, ¢*] and v: (G . B) = m (G) & (B) for any Borel sets G C_ A
and B CC @Q:

a) there exists ¢, (f) = X4 (1, 74, v:(-)) and an instant ¥, = A [} 7 such

that . ¢ ¢ ~
2 miny, o (f, @a (0.), m) <<y + o (0, — 1)

for all # 7= A.

Proof, We choose «, as follows: let p >0 and v < ©° — 8, then 2, = (¢, —
t,). Let us assume that the lemma is incorrect for the given .. Then we can find a
position {4y, z,) & 11, an instant ¢*, and a probability measure § () such that state=
ments (a) and (b) of the lemma are simultaneously violated for some 2 : 1 <7 < o,
This signifies that for any ¢ (1) € X4 {tey T V¢ {*)) we can find the first instant T,
te <1, <t* such that for any ¢ > ¢ in the semi-interval [T,, T, + ) we can find
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ty such that ¢ {75 ¢ ') > v + 2 (t5 — 1.} , because otherwise statement (b) would be
fulfilled, Because 117, ra(tymte) is closed the position (1., ¢ (T;)) is contained in
Weta(sg-tyyr LeU Tz = max 1, in the class ¢ (1) € X 5 (ts, T4, v (+)) and let § () be the
motion from X 5 (ter Ts V(). realizing 1. By assumption Tg E0 (13, ¢ (Tg)) and by vir-
tue of Lemma 4,2, w, < & (1. § (1) = 7 + @ (t; — t4) < @°. Then we can find an
instant § = 0 {tg, @ (1) relative to which Conditions 1 and 2 are fulfilled simultane~
ously and, hence, so is Lemma 3, 2, taking which into account we arrive at a contradic-
tion with the fact that 1y = max 7, on X, (fs, Ze V: 02)).

Lemma 4,4, Forany v: w, <y << o theset W, is u=-stable for any position
(L, z4) & W, any instant t* = [¢,, U,] and any probability measure £ (+) onQ,
one of the following two statements is valid for the family Xa (f4, x,, vz(<)) ¢

1) there exist @(2) & Xa (f4, X4, v2(*)) and an anstant ¢, < A{) T such that

min Mg, w (ﬁﬂ“ @ (&*)s m) \<\ ¥

2) there exists ¢ (£) & Xa (Zy, &4, v5(+)) such that (¢, @ (2)) &= W, for any

te= Al

The proof follows from Lemma 4, 3 and from the fact that the family X. (4, z,,
v:(-)) is compact in itself,

The following theorems are proved analogously as in [4 ~ 6],

Theorem 4,1, Let w, & = & (f,, o) < ©°. Then the counter-strategy
U,” realizing the extremal sighting on the leading motion solves Problem 1,

Theorem 4.2, Let o, < & = & (f,, 2,) << &° and let a saddle point exist in
in the small game, Then the strategy [J° realizing the exwremal sighting on a leading
motion solves Problem 2,

Let o (&, o, m) =& — m| forall & & [¢,, O,], where m 7= M, and 3/, is
a closed subset of f2". Then Problems 1 and 2 are problems of position encounter with
set M, by instant T, The possibility that in the given case .} is noncompact is un~
essential because the problem reduces to the problem of encounter with some compact
subset of 3/,

6. Problem 3, Given (f, 7)), %y 1, and e, find strategy V'° guaranteeing
miny miny, o (9, rve [U], m) >«
for every motion v [¢].
Problem 4, Construct a strategy pair {{/°, }'°) such that the inequality
SUD 20 113 minpmingem (¥, 2re, v [H1, m) <
ming wingr o (4, 2° (0], m) < infm,, ol ming ming o (9, 2 v (8], m)
is fulfilled for every motion 2° [¢] == 2y, ve |£]

It is well known that to solve Problem 3 it suffices to construct a rr-stable [3] system
of sets and to choose as V? the strategy realizing the extremal sighting on some leading
motion [6] maintained in this system of sets, Problem 4 is successfully solved if Condi~-
tions 1, 2 are fulfilled together with the conditions sufficient for solving Problem 3, In
case M is a closed set in space R”, while w (), z, m) = | — m |, Problem 3 is
the usual evasion problem [3] and Problem 4, respectively, is the encounter-evasion prob-
lem with the target set Af,.

Lemma 5,1, For every position (f4. &) the function ¢ (£, x) = ming, g0 1€
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(t, x, ¥) satisfies the following condition: for any number @ > () there exists § =
& (o tys Te) > () such that
&% (ty, 7y) << a + €° (2, 2)

for every position (¢, 1) : 0 Tt — t, << 8, |z —z, | << .

Lemma 5,2, Forevery position (z‘*, x*) and any number @ > () we can find
Oy == 8z ({4. 24) > 0 such that

O (1, 1) C O° (tyr T4,

where )2 is the -neighborhood of set vy , for any position (¢, x) : (0 <t — ¢, <<
Oay [ — xy | << 8aw € (L, 2) < €° £y, T4) -

The lemma is proved by contradiction, using Lemma 5.1, The condition e° (¢, x) <X
€% (4, Iy) is highly essential, Indeed, if we examine the scalar system

d.l‘/df:u«-v
w @z, m=]zr—m| for & =8 and & = 0,

and the set M = O, My} U {0, My}, where &, <&, My = [0,a], My = [0},
jut < u, |e| << v, and, moreover, u -~ v <l a/ (§, — ©)), then the set® (9, o) = {8y}
for the position (9,, a) , while 0 (t, r) == {8,} for every position (¢, z) along the motion
from position (%, a) for ¢ > ¥, , Note that for a fixed position (t4, z4) the set G ({4, Zx,
¥) cannot possess, as ¢ varies, the property of weak upper semicontinuity by inclusion,
Forexample,in the system

dr/dt=u—¢ luj<<p, lo]<v 0,0, v>u

Mg = ¢ for & <9, <9

My ez Ol M= {k(®—98)) for ®>8, k>0
for the position (1, == 0, 2, == O) the second player's optimal program control relative
to the instant § > ¥ is ¢qp() < + v almost everywhere and is unique, while relative
to the instant ¢ = ¥ itis vty (1) = —v almost everywhere and also is unique ; note
that at the point ¥, the function

&0 1y, 2oy ) = (v — ) B + & (& — D)), ¥ & [0y, O]

is right-continuous in &,

8. We make the following auxiliary constructions: together with a position (tgr )
we consider a neighboring position (¢, 2), ¢ > f,. Let ¥ & = (t, 2), v, (-) =
0 (g 24 0), let measure ¥, (-) < {F (m (- }) j#, 0]} coincide wuh vy {-) on
[, 01 O, 1et 7, () = {11 (vg { )) It IREA P}U, fy T ALY (N, () | £ 2.
By b* ( t, &, | ty. xy) we denote the set of all vectors s, of the form

o = 4’—;};(0 (0, @ (9), rﬁ,,)],S(ﬂ‘, £ @ () Mo () (6.1)

as b ranges over 0 (¢, a), v, () ranges over s (t,, x,, 1)), 1}, (-) ranges over
{1 (g (1)), 18, O] | ¢, 2}, and 77, ranges over A0 (T'O( ) | t. xr). Such sets can be
constructed for all positions (¢, x),t >>1,, € (t, x) < &°(t,, ¥4), from some neighbor-
hood of (g, 2g), < (fy, Ty) <<~)

We assume that the following condition is fulfilled,

Condition 3, Forevery position ({4, 7y) such that ®g < €° (I, 7y) << ©°
and for a probability measure W (-) on /P we can find a probability measure & (-)
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on P X () consistent with pi (-) and such that for any number =« - U there exists

8q == 04 (Lys ¥y 5 () > 0 along the program motion ¢z (t) == @ (¢, Ly, Ly, Nz (+))
and that for every position

(g (D)t = Mty 1+ 80, € (8, @z (1) <L €° (L4, 1)

we can find a vector s, & S* (4, ¢z ({) | L4, x,), satisfying the condition

3*'S Sf(f*, Ty, Uy ) E(du x dv) > maxg minps,'f (L. €y, U, V) —
PQ

-

Here ¥z () is a program control for which ng,; (-) -~ £ (-). Let us present more
intuitive conditions under whose fulfillment Condition 3 is satisfied,

Condition 4, The sets o (¢, x4, ) are weakly upper semicontinuous by inclu-
sion at each point ¢, = O (ty, x4) for every position (¢, r,) such that wo < €° ({4,
\T*) << of

This condition is always fulfilled when Ay varies continuously with varying &, when

M= [ (8, M)
1
and, in a large number of other cases, when 3/ does not possess the property of conti-
nuity in ,

Condition 5, For every position (0, << &€° (f4, Iy) << ©°) , for any probability
measure |t (-) on [ we can find a probability measure & (-) on P X (), consistent
with it, for which the inequality

sy K Sf(t*, Ty Uy V) E(due x dv) >> maxg minps,'f Ly, Ty, U, V) (6.2)
PO
is fulfilled on each vector
Sy = U So(tqu Ly ﬁ) = SO(t’*"T*)
o(l,, x,)

Lemma 6,1, Condition 3 is always fulfilled when Conditions 4 and 5 are fulfilled,

Proof, We choose any position (t, z4) such that @, <{ € (ts, z4) < ©° and for
neighboring positions « (¢, z), t > fx and &° (¢, 2) < €° (i, 74), W€ examine the sets
S* (f, | L. zx). Let us show that for any o >0 we can find 0, = 0_ (¢4, z,) > 0 such
that S* (1 2 |ty 7 © So* (e 25)
for every position (¢, z): 0 <{ ¢t — 14 < 8, |z — 24 [| < 8, &° (¢, ) < €° (4, z4).In fact,
let us assume the contrary. Then we can find {({n, zn)} satisfying the above=-stated con~-
ditions and such that (¢,,, 2,,) — (fx, ) ; moreover, for each ;. there exists s, & 5™ (tn,
Zn | ty, z4) such that

e Isn — 501> (6.3)
for every sy & Sy (14, 74} , This signifies that

(8,30, & O (tn, 20), Vel () € 5 (Las Tuy )
1’ () {1 (va® () [tn, Bnl | tn, Znto

mp® & AI{): (Ain® () | tn, 7n)

exist for which s, is expressed by (6,1),
Without loss of generality we can assume that the sequences {,} and {#°} converge
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9, — b SO (fy, 74), mSo—mte My

and that the sequences {v,°(-)} and {7, (-}} converge weakly, respectively, to the prog-
ram controls

s

Ve () S 5(‘*» Ly ﬂ*)v nO () S {n (vo('))v [t*, ﬂ*]‘
Then,

© (\(}** (;'0 (ﬁ*)a ”LO) = hﬂlﬂ @ ({}nv &"no (0»“)? ';;no) it

lim_min - min o (¢
UGGt ooty e (

On the other hand, it can be shown that
lim, o (9, Fﬁno (O, m, %) =& (I, 7y)

n Ty 1)

Hence
@ (Oy, P°(By), m°) = Mg, 1, v, o)) minM& o (O, v, m)
Thus,
1) S {I V0D, [ra, Bl 1 tgs 2ado (6.4)
m® = M;' (M%) ] Ly 24)
Then, a vector s, of the form

8 == {:%m({}*, P° (B4, ma)] S (B L @7 CH M)

belongs to &, {t«. z4). From the weak convergence of {1,%-)} to 1° (-}, as well as with
due regard to {n — tx» ¥n — 8, we obtain

lim, | S (0 60,0 () 1,° (D) — S (B, £, @) (N[ =0

But then s, = limpy sn, which contradicts (6, 3), Hence follows the validity of Condition3,

We note that S* (¢, x [ t,, xy) = Sy (b4, zy) for t = t,, z = z,.

The fulfillment of Condition 4 is highly essential because in the general case the prog=
ram control v9 (-) may not belong to the set ¢ (fy, Z,, U,),as we see from the exam-
ple of the linear system dx / dt == 1 — U analyzed in Sect, 5, as a result of which con~
dition (6, 2) may not be fulfilled on a vector s, constructed by means of (6,4), We can
waive Condition 4 if we require the fulfillment of (6,2) on a properly augmented set of
VECIOrS 5.

Lemma 6,2, Forany position, 0y << € (fy, 24) << ©°, and for a probability
measure p (-) on £ ,the bound &° (4, ¢y (1)) — &° ({y, Lu) 2> 0 (f — ta) =
0 (At), where o (t — ty) /(t — ty)~> 0 as t — t,_,is fulfilled along the motion
9z (1) = @ (¢, t*, Zgy Nz (), where § ( -} has been chosen from Condition 3,

Proof, Set.r = qp () and let &° (1, 2) <T & (14, z,). For every

G =B (L, 2}, vy () € 5 (ty, 4o )

o () E T (% (), L8, B | 1, 2}, 7o € My® (o (1)1, 2)

€ (8, ) ~ £° (lg, 24) = 0 (T, §o (), 7Ty) — 0 (8, @q (), 7,)
Go (9) = @ (8, 1y, 7o, B ()

where 1, (-) is any program control of player 1 from {Il (v, (-)), [ts, 8]} coinciding
with (1) on {r, ¥ X P X Q.

Po () = Go () + S (B, 1, Fo (), 1o (+)) (A — AX) + 0 (At)
where
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!
Aq‘u:S Sf Ly Tay U 0) Mo (dT % du x dv) + 0 (AL)
Q
1

[ (f4o e 4, 2) % (du X do) | AU -0 (A1)

By choosing ¢ from a sufficiently small neighborhood of ., we can take it that w (9.
z, m* is differentiable in z at the point (¥, §, (8), 7ity) for every @, vy (-), Vo (-) and
i, satisfying inclusions (6.4), Then we can show that

Aet =28 (l, ) — & (g 04 2

-

o !
l_—‘ o (U, Fo (), ITL{D)J SO T (), o () (A — Aoy - o (N)H-

r

{s*’ B Ss (Fay Tas 16, 0) 5 (du X dr) | AL —

£Q

i

’

t
s\ S Sf([*, e 10y ) Mo (dT X du X do) 0 (AY)
£

«

i

for any s, = &% (1, £ | ty, 2,) When &° (1, x) < €° (ts, 4). Since the control 1, (1 &
{IT (¥4 (-)), |4, U]} can be chosen arbitrarily on [r,, 1] X P x (; , we obtain the lemma's
assertion after simple manipulations with due regard to Condition 3,

7, Foreachy by W.* we denote the set of all positions (¢, x) for which &° (¢,

z) 2> 7+ The set W.™ has closed sections W.* (7). If {(fy, 25)} CC W,* and {¢;}
increases monotonically, and, moreover, if (£, 2%) — ({4, z,), then (., x,) & 1*%.
For each probability measure p (-) on /°, position (¢, .xy) ,and instant (* = [¢,, O],
by X, (s, &s. t*¥) we denote the family of program motions on {/,. ¢*] generated
by all possible controls n () = {H (m .-}, lty, t*]} consistent with p () ;

(' x4 X Q) =m(l')u(d) onanyBorelsets I' (C |t,, 1" and 4 C P,

Lemma 7,1, For every position (¢,, x,) & W.*, w,<{y<C o', for any pro-
bability measure p (-) on £ ,and for any number o, U <C @ <Z %y, there exists a
program motion @y (£) & X, ({4, Ly, %) on £y, (¥} such that & (¢, qu(t)) =7 —
a(t —ty) for any t = |t,, t*].

Lemma 7,2, Forevery v, o, <y <_ w”, the set 1}",* is v =stable: for any
position (f,, x,) & W.*, probability measure W (-) on P ,and instant /* & [, O |
there exists ¢° (1) & Xy (4, T4, 1¥) such that (¢, ¢° () = W, * for { = &, (¥].

Let the small game [3] possess a saddle point,

Theorem 7,1, If wy<C €° (t,, 7o) = &€ <. »", then the strategy 1 extremal
to H'c* solves Problem 3,

Assume that conditions 1 and 2 are fulfilled together with Gondition 3 and that L' is
a strategy extremal to the system of sets of program absorption W () = {x : &° (¢,

Theorem 7,2, If w,<C & ({y. £y) = &< w°, then the strategy pair (L7, ")
solves Problem 4; moreover, for any motion i, ve [¢]

miny miny g @ (U, zie ve [U], m) =&

The author thanks N, N, Krasovskii for posing the problem and for attention to the work,
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In the problem of the motion of a rigid body with one fixed point in a central
Newtonian force field (in particular, in the de Brun field [1]), The existence of
a family of periodic solutions is proved by the Poincaré method of small para=-

meters, It is assumed that the body differs negligibly from a dynamically sym=
metric one and that its center of gravity is sufficiently close to the fixed point,
The proof is carried out by using the techniques of Hamiltonian systems,

We investigate the motion of a rigid body around a fixed point in a Newtonian gravity
field, making use for this purpose of the canonical Deprit variables [2] which we introduce
as follows, Let JXYZ be a fixed coordinate system with origin at a fixed point (..
whose Z -coordinate axis is directed vertically upward, and let Oxyz be a system of
axes directed along the principal axes of inertia for point (), Further, let .}, & be
the Euler angles defining the position of the moving system (.cys relative to the fixed
one, We introduce a plane containing point () and perpendicular to kinetic moment
;. The position of this plane is given by the longitude % of its nodat line on the OXY
plane and its inclination 7 to this same plane, Finally, we introduce two more Euler
angles defining the position of the moving system of axes relative to the plane perpen-
dicular to the kinetic moment: the angle of self-rotation / and the nutation angle b.

As coordinates we now take the angles [/, g, 2 introduced, The canonical momenta



